Sound Impact Limitation - Design for Industrialized Solutions (SILDIS): a single Excel based software for a wide range of applications

Updated by Philippe Reynaud on February 2024 the 16th (philippe.reynaud@its-acoustique.fr)

ITS <u>Overview of features</u>

- the prediction of performances of products and construction systems for noise control engineering often requires an approach whose nature is computationally intensive, making its application difficult for most acoustics practitioners. The software SILDIS (Sound Impact Limitation Design for Industrialized Solutions) has been developed in order to make possible such a prediction without any computational effort from users, by the means of a single PC-tool appropriate for a wide range of industrial engineering purposes, with a reliability based on the agreement of the prediction results with existing computation schemes and with measurement results (hundreds of comparisons for various types of computations)
- regarding the multi-disciplinary scientific and technical background, suitable approaches of all times, able to be
 included in the general layout of the program, have been selected and encapsulated in a easy-to-use Excel
 based software using drop-down menus and providing results in tabular and graphical form (French or English
 language) with comprehensive input/output data on a unique printable simulation report.
- as far as materials are concerned (such as porous media, series cloths, series perforated protections, and thin plates: see below), specific libraries (data bases) with more than 20 references for each kind of acoustic layer allow the design to be made with in-built engineering data (constants).
- almost all acoustics calculations are performed at single frequencies (20-20kHz) and displayed per 1/3 and/or 1/1 octave band: global values with respect to a chosen reference spectrum are computed whenever it makes sense.

MODULE 1 prediction of acoustic and aerodynamic performance of silencers

- either dissipative silencers (for those equipments the considered cross section can be either rectangular or round, with or without a central pod, with or without an intermediate annular splitter) for a lining including up to 4 porous media, up to 4 series cloths, up to 4 series perforated protections selected among a library including for each kind of layer more than 20 referenced materials.
- or resonant silencers with so called Pine Tree splitters (for those equipments the considered cross section can be rectangular) for a lining including up to 4 porous media, up to 4 series cloths, up to 4 series perforated protections selected among a library including for each kind of layer more than 20 referenced materials

For a rectangular silencer the results of the calculations are comparable with the standardized measurement: see NF EN ISO 7235 Acoustics - Laboratory measurement procedures for ducted silencers and air terminal units- Insertion loss, flow noise and total pressure loss.

MODULE 1A prediction of acoustic and aerodynamic performance of silencers with discontinued splitters:

 dissipative silencers (considered cross section being rectangular) for a lining including 1 porous medium, 1 series cloth, 1 series perforated protection (material properties registered in database)

For a rectangular silencer the results of the calculations are comparable with the standardized measurement: see NF EN ISO 7235 Acoustics - Laboratory measurement procedures for ducted silencers and air terminal units- Insertion loss, flow noise and total pressure loss.

MODULE 1B prediction of acoustic and aerodynamic performance of reactive silencers:

For those equipments the considered cross section can be round) for an elements combination including up to 1 uniform tube, up to 2 extended tubes

The obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures.

MODULE 2 prediction of acoustic performance of plane partitions

• for an acoustic structure including up to 2 porous media, up to 2 series cloths, up to 2 series perforated protections, up to 2 sets of identical series thin plates with up to 1 complementary rear set of identical

series thin plates selected among a library including for each kind of layer more than 20 referenced materials (with an atmospheric back or with an impervious rigid back).

The results of the calculations are comparable with the standardized measurement: (in case of an atmospheric back) see NF EN ISO 10140-2 Acoustics. Laboratory measurement of sound insulation of building elements. Measurement of airborne sound insulation and (in case of rigid impervious back) see NF EN ISO 354 Acoustics – Measurement of sound absorption in a reverberation room and also ISO 10534-1 Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 1: Method using standing wave ratio.

MODULE 3 prediction of acoustic performance of duct walls

o either with a rectangular cross section, or with a circular cross section (including folded spiral seam ducts)

The obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures.

MODULE 4 prediction of acoustic performance of straight ducts

o either with a rectangular cross section, or with a circular cross section (including folded spiral seam ducts)

The obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures.

MODULE 5 prediction of break-out noise

• either of straight ducts with a rectangular cross section, or with a circular cross section - including folded spiral seam ducts or of silencers

The obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures.

MODULE 5A prediction of break-out noise of ducts with variable cross section (with a rectangular cross section)

The obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures.

MODULE 6 prediction of acoustic performances of bends and junctions (in ducts systems)

with a rectangular cross section, or with a circular cross section, or with mixed cross sections)

The obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures.

MODULE 7 prediction of nozzle reflection

• with a rectangular cross section or with a circular cross section

The obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures.

MODULE 8 prediction of the sound impact of duct systems

 including components such as silencers (dissipative or resonant), straight ducts sections, bends with a rectangular cross section, or with a circular cross section, or with mixed cross sections (for some components)

MODULE 8A prediction of stacks directivity

Some of the obtained results are comparable with some input data envisaged in standardized calculation: cf. NF EN ISO 9613-2 Acoustics -- Attenuation of sound during propagation outdoors -- Part 2: General method of calculation (1996)

MODULE 8B prediction of atmospheric sound absorption

Some of the obtained results are comparable with some input data envisaged in standardized calculation: cf. NF EN ISO 9613-2 Acoustics -- Attenuation of sound during propagation outdoors -- Part 2: General method of calculation (1996)

MODULE 8C prediction of control valves aerodynamic noise

MODULE 8D prediction of jet noise (including safety valves noise)

MODULE 8E prediction of piping systems discharge parameters

MODULE 8F determination of the performance & sizing of safety valves

MODULE 8G simulation of the discharge of a fluid trough a valve vent stack

MODULE 8H prediction of acoustic and aerodynamic performance of vent silencers for pressurized fluids

MODULE 9 prediction of sound decay in enclosed spaces

The obtained results are comparable with standardized measurement: cf. NF EN ISO 3382-2 Acoustics - Measurement of room acoustics parameters- Part 2: reverberation time in ordinary rooms.

MODULE 9A prediction of sound spatial decay in open-plan offices

Some of the obtained results are comparable with standardized measurement NF EN ISO 3382-3 Acoustics - Measurement of room acoustics parameters- Part 3: Open plan offices.

MODULE 10 prediction of the noise emissions from buildings and other constructions

Some of the obtained results are comparable with standardized calculations: cf. ISO 12354-4 Building acoustics - Estimation of acoustic performance of buildings from the performance of elements - Part 4: Transmission of indoor sound to the outside

ITS <u>Applications</u>

SILDIS is useful for consulting projects and products/construction systems development projects involving sound reduction/airborne noise insulation by the means of passive acoustics solutions in various domains: protection of workers, protection of environment, energy sector, measurement rooms, building

MODULE 1

Prediction of acoustic and aerodynamic performance of silencers

ITS <u>Scope of computation</u>

design of devices reducing the acoustic transmission in a duct, a pipe or an aperture, without preventing the carriage of the fluid (dissipative: attenuating the wideband sounds with a relatively low pressure loss and converting partially the acoustic energy into heat by friction on tubes having a porous or fibrous structure or resonant: with Pine Tree splitters producing an acoustic attenuation from weakly damped resonances of elements containing or not containing absorbing materials - at the rear of the chambers or lateral -).

ITS Applications

- creation of a sound transmission loss by the means of the construction of a silencer possibly included in a (soundproofing) industrial building/ booth/wall/screen: protection of workers, protection of environment, energy sector, measurement rooms, building, notably:
 - ventilation of enclosures and/or air input for thermodynamic processes for various noisy equipments such as fans, aero condensers, engines, gas turbines...
 - ✓ ventilation of test benches and/or air input for thermodynamic processes of test benches...
 - noise reduction of stacks, exhaust of gas turbines...

ITS <u>Computation scheme (bloc diagram) for dissipative silencers: adapted for resonant silencers</u>

ITS

Main/special features, main effects taken into account

design possible for multilayered acoustic structures: most sophisticated acoustic structure available (for the lining / for half a splitter) as shown on the figure below (air flow according x-direction, thickness of the lining / half a splitter according y-direction)

item	layer (*)
C, G, K, O	porous medium (**)
D, H, L, P	series cloth (**)
E, I, M, Q	series perforated protection
	(**)

symetry plane / impervious rigid back

* selected among a library including for each kind of layer more than 20 referenced materials

**some cloths and some perforated protections can also be considered as porous layers for the computation

for an acoustic structure including a **porous medium** (i.e. polyester, rock wool, basalt wool, glass wool, foam ...for which the engineering data can be referenced or air): **behavior taken into account from to the microscopic scale level** in relation with the properties such as flow resistivity [cf. fig. 1] and other parameters for a locally reacting absorber or a bulk reacting absorber with a possible inhomogeneity of properties such as flow resistivity (σx, σy on figures below) or other parameters, of 1 layer in directions perpendicular to and parallel to its surface [cf. fig. 2]

- effect of a laminated lining (for each layer: different properties such as flow resistivity [cf. fig. 3] or other different parameters): taken into account
- effect of a cloth (i.e. fabric, unwoven...for which the engineering data can be referenced): taken into account [cf. fig. 4]
- for an acoustic structure including a perforated protection (i.e. perforated sheet with circular holes and square or hexagonal array, perforated sheet with square holes, infinite slots... for which the engineering data can be referenced): interaction of the protection with a porous medium at the front/at the rear taken into account [cf. fig. 5]
- by-pass correction taken into account [cf. fig. 6]
- reflection loss taken into account [cf. fig. 7]
- effect of temperature/of pressure taken into account [cf. fig. 8] [cf. fig. 9]
- effect of the velocity of air flow (other than self noise [cf. fig. 10], self noise [cf. fig. 11]) taken into account
- different possible geometries for the splitters/the lining: rectangular, semi circular or profiled aerodynamic type upstream/downstream (cross section for a dissipative silencer: rectangular, square or round - with or without central pod, with or without up to 3 intermediate annular splitters -, cross section for a resonant silencer: rectangular)

Fig. 2

10

propagation loss Da

100 f(Hz

Isolation Technologie Services - SARL au capital de 7000 Euros - Siège social : 3 route du Mont Cindre F-69450 Saint Cyr au Mont d'Or Tél. +33(0) 952 36 35 31 - E-mail: contact@its-acoustique.fr - Internet: www.its-acoustique.fr

Main results displayed for the acoustic structure used for the lining/half a splitter (with an impervious rigid back/a symmetry plane):

- complex surface impedance for normal incidence: Z per 1/3 and 1/1 octave frequency band
- absorption coefficient at normal incidence: α0 per 1/3 and 1/1 octave frequency band
- the results of the calculations are comparable with the standardized measurement: see ISO 10534-1 Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 1: Method using standing wave ratio.

ITS Main displayed results for the silencer (tables and graphs):

- total pressure loss (and non dimensional total pressure loss coefficient)
- insertion loss without flow: for 3 usual different conditions of propagation of sound inside the lining per 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)
- insertion loss with flow without flow noise Di'(detailing longitudinal attenuation Da.L, bypass correction Dc and reflection loss Dr) for 3 usual different conditions of propagation of sound inside the lining per 1/3 and 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

self noise (acoustic power of flow noise) per 1/1 octave frequency band (as well as A-weighted overall value)

Isolation Technologie Services - SARL au capital de 7000 Euros - Siège social : 3 route du Mont Cindre F-69450 Saint Cyr au Mont d'Or Tél. +33(0) 952 36 35 31 - E-mail: contact@its-acoustique.fr - Internet: www.its-acoustique.fr A-weighted and not A-weighted acoustic power with silencer Lw1 for 3 usual different conditions of
propagation of sound inside the lining (comparable with the not A-weighted acoustic power without
silencer Lw0) per 1/1 octave frequency band

 insertion loss with flow and self noise for 3 usual different conditions of propagation of sound inside the lining per 1/3 and 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

the results of the calculations for a rectangular silencer are comparable with the standardized measurement: see NF EN ISO 7235 Acoustics - Laboratory measurement procedures for ducted silencers and air terminal units- Insertion loss, flow noise and total pressure loss

ITS Main/special features, main effects taken into account

design possible for 1 multilayered acoustic structure

land mark	element
Е	series perforated protection
D	series cloth
С	porous medium

- **porous medium** (i.e. rock wool) **behavior taken into account** for an absorber with an inhomogeneity of flow resistivity of the layer in directions perpendicular to and parallel to its surface
- effect of a negligible cloth for which the engineering are referenced): taken into account
- perforated protection (i.e. perforated sheet with circular holes for which the engineering data are referenced): taken into account as negligible
- by-pass correction taken into account

- reflection loss taken into account
- effect of temperature/of pressure taken into account within in the limit of room conditions
- effect of the velocity of air flow (other than self noise & as self noise) taken into account within of Mach number from -0.3 to 0.3
- different possible geometries for the splitters/the lining: rectangular, semi circular or profiled aerodynamic type upstream/downstream (cross section for a dissipative silencer: rectangular)

ITS <u>Main displayed results for the silencer (tables and graphs):</u>

- total pressure loss (and non dimensional total pressure loss coefficient)
- insertion loss without flow for 1 condition of propagation of sound inside the splitters filling 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)
- insertion loss with flow without flow noise Di'(detailing longitudinal attenuation Da.L, bypass correction Dc and reflection loss Dr) for 1 condition of propagation of sound inside the lining per 1/3 and 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

- self noise (acoustic power of flow noise) per 1/1 octave frequency band (as well as A-weighted overall value)
- A-weighted and not A-weighted acoustic power with silencer Lw1 for 1 condition of propagation of sound inside the lining (comparable with the not A-weighted acoustic power without silencer Lw0) per 1/1 octave frequency band

							Lw0	■Lv	vl				
160	1				_				_				
140													
120		-	Н	H	╞	╢		-[┣	╢	-1	⊢∩⊢	╢╸
100	-		Н	-	H	łŀ	H	_	h	╢			┥╟
≥ 80	-		H	Н	H		HI	Н	H	┥┣	-		┥╟
Md 1:Jai El	+ 1			-	H	-11	HI	Н	⊩				- 1
별 40 ·	-		Н	-	H	-11	HI	Н	H		-		- 8
20	Ŧ.		H	H		-		Н					
0			Ļ	Ļ			Ļ	Ļ					
	31	63	13	5 2	50	500		: 2 Hz)	k	4k	Sk	16k	A

 insertion loss with flow and self noise for 1 condition of propagation of sound inside the splitters filling per 1/3 and 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

						∎Di				
					_					
					-	-				
					-11	_				
				-						
								_		
	_						- 11			
				,		-				
31	63	125	250	500			4k	8k	16k	A
	31	31 63	31 63 125	31 63 125 250	31 63 125 250 500					

... etc

Report	Date	Page
PhR24-013	17-06-2024	10/45

 the results of the calculations for a rectangular silencer are comparable with the standardized measurement: see NF EN ISO 7235 Acoustics - Laboratory measurement procedures for ducted silencers and air terminal units- Insertion loss, flow noise and total pressure loss

Extended Inlet (EI)

Reversal Contraction (RC)

Report	Date	Page
PhR24-013	17-06-2024	12/45

Side Inlet (SI)

Transverse Tube(s) group (TT)

Transverse Inlet (TI)

Side Outlet (SO)

Transverse Outlet (TO)

Variable Tube(s) group (VT)

Dissipative Section (DS) as computed with Module 1 of software SILDIS

Helmoltz Resonator (HR) side branch

Helmoltz Resonator (HR) concentric

Isolation Technologie Services - SARL au capital de 7000 Euros - Siège social : 3 route du Mont Cindre F-69450 Saint Cyr au Mont d'Or Tél. +33(0) 952 36 35 31 - E-mail: contact@its-acoustique.fr - Internet: www.its-acoustique.fr

Perforated tube(s) group (PT)

Cross Flow Expansion (CFE)

• preconfigured mountings involving long expansion chambers

✓ in-line chambers

EC1 = 1 expansion chamber

Cross Flow Contraction (CFC)

✓ chambers with side inlet

EC2SI = 2 expansion chambers, with 1 or several connecting tubes (without overlapping between connecting tubes), with side inlet

Report	Date	Page
PhR24-013	17-06-2024	14/45

EC3SI = 3 expansion chambers, with 1 or several connecting tubes (without overlapping between connecting tubes), with side inlet

EC1SO = 1 expansion chamber, with side outlet

EC2SO = 2 expansion chambers, with 1 or several connecting tubes (without overlapping between connecting tubes), with side outlet

EC3SO = 3 expansion chambers, with 1 or several connecting tubes (without overlapping between connecting tubes), with side outlet

✓ chambers with side inlet & with side outlet

EC1SISO = 1 expansion chamber, with side inlet, with side outlet

EC2SISO = 2 expansion chambers, with 1 or several connecting tubes (without overlapping between connecting tubes), with side inlet, with side outlet

Report	Date	Page
PhR24-013	17-06-2024	15/45

EC3SISO = 3 expansion chambers, with 1 or several connecting tubes (without overlapping between connecting tubes), with side inlet, with side outlet

✓ chambers with overlapping tubes

EC1R1 = 1 expansion chamber, with overlapping tubes

EC1R2 = 1 expansion chamber, with 2 overlapping tubes in expansion chamber 1

EC2R22 = 2 expansion chambers, with 2 overlapping tubes in expansion chamber 1, with 2 overlapping tubes in expansion chamber 2

preconfigured mountings involving short expansion chambers

the <u>preconfigurated</u> mouuntings (<u>involving dissipative sections</u>) for which performance acoustic & aerodynamic simulation is possible are as follows:

CDE = splitter section as calculated with module of software SILDIS

the <u>preconfigurated</u> mountings (<u>involving Helmoltz Resonators</u>) for which performance acoustic & aerodynamic simulation is possible are as follows:

HR1SN = single Helmholtz Resonator Short Neck & HR1LN = single Helmholtz Resonator Long Neck

Side branch

ECHRLNEC = Expansion Chamber + Helmholtz Resonator Long Neck + Expansion Chamber

HR2SN = double Helmholtz Resonator Short Neck & HR1LN = double Helmholtz Resonator Long Neck

Side branch

Concentric

 the <u>preconfigurated</u> mountings (<u>involving Perforated Tubes</u>) for which performance acoustic & aerodynamic simulation is possible are as follows:

EC1P1 1 expansion chamber, with 1 perforated tube

EC1P2 1 expansion chamber, with 2 perforated tubes

ECF+ expansion with perforated tube, uniform tubes

ITS <u>Main displayed results for the silencer (tables and graphs):</u>

- total pressure loss
- transmission loss with flow per 1/3 & 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

 insertion loss with flow with a substitution duct per 1/3 & 1/1 octave frequency band (as well as Aweighted overall value with respect to a reference spectrum)

	ILsd	(dB)		ILsd	(dB)
f (Hz)	1/3 oct	1/1 oct	f (Hz)	1/3 oct	1/1 oct
25	0,0		800	-4,2	
31,5	0,0	0,1	1k	9,1	0,4
40	0,1		1,25k	15,6	
50	0,1		1,60k	25,3	
63	0,2	0,2	2k	18,5	-21,3
80	0,3		2,50k	-26,1	
100	0,5		3,15k	-34,9	
125	0,7	0,8	4k	-61,0	-56,3
160	1,2		5k	-41,5	
200	1,8		6,30k	-51,1	
250	2,8	2,9	8k	-50,1	-49,9
315	4,2		10k	-47,9	
400	6,3		12,50k	-41,6	
500	9,7	9,2	16k	-43,3	-43,7
630	17,0		20k	-45,4	
		ref: Lw0	A	-50,8	ref: Lw0

noise reduction with flow with an additional duct per 1/3 & 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

f (Hz)	INK	(aB)	f (Hz)	NK (dB)		
I (HZ)	1/3 oct	1/1 oct	1 (H2)	1/3 oct	1/1 oct	
25	22,6		800	40,5		
31,5	22,6	22,7	1k	32,7	30,2	
40	22,7		1,25k	26,4		
50	22,7		1,60k	10,7		
63	22,8	22,8	2k	21,9	-1,1	
80	0 22,9		2,50k	-5,8		
100	23,1		3,15k	-40,6		
125	23,3	23,4	4k	-54,9	-54,7	
160	23,7		5k	-57,5		
200	24,4		6,30k	-48,0		
250	25,4	25,5	8k	-45,0	-48,6	
315	27,0		10k	-50,9		
400	29,6		12,50k	-41,8		
500	34,0	32,9	16k	-43,9	-43,7	
630	43,4		20k	-44,9		
		ref: Lw0	Α	-48,9	ref: Lw0	

- self noise (acoustic power of flow noise) per 1/1 octave frequency band (as well as A-weighted overall value)
- A-weighted and not A-weighted acoustic power with silencer Lw1 (comparable with the not A-weighted acoustic power without silencer Lw0) per 1/1 octave frequency band
- transmission loss with flow and self noise per 1/3 and 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

 the results of the calculations for a rectangular silencer are comparable with the standardized measurement: see NF EN ISO 7235 Acoustics - Laboratory measurement procedures for ducted silencers and air terminal units- Insertion loss, flow noise and total pressure loss

	🛙 Di' 🛛 Di
40	
35	
30	
25	
円 20	
15	
10	
5	──── ── ─ ─
0	┼═━┼╹┺┼╵┺┼╵┹┼╵┹┽╵┹╷╵┻╷╵┺╷╵┺╷
	31 63 125 250 500 1k 2k 4k 8k 16k A f(Hz)

MODULE 2

Prediction of acoustic performance of plane partitions

ITS Scope of computation

design of acoustic structures (products and construction systems) for which the shape of the surfaces from the one hand: facing the front atmosphere and from the other hand: at the rear are sufficiently close to a plane (for example: including corrugated plates and profiled claddings)

ITS Applications

- creation of a sound reduction by the means of the construction of a (soundproofing) industrial building/ booth/wall/screen with or without limiting the amplification of sound level on 1 or 2 sides of the acoustic protection (0,1 or 2 absorbing faces)
- Imitation of the amplification of sound level on 1 or 2 sides of an acoustic protection: protection of workers, protection of environment, energy sector, measurement rooms, building, notably:
 - ✓ construction of enclosures for various noisy equipments such as fans, aero condensers, engines, gas turbines...
 - ✓ construction of test benches...
 - noise reduction of stacks, exhaust of gas turbines...

ITS <u>Computation scheme (bloc diagram)</u>

ITS <u>Main/special features, main effects taken into account</u>

design possible for multilayered acoustic structures (including: laminated absorbing materials)

item	layer (*)
C, G	porous medium (**)
D, H	series cloth (**)
E, I	series perforated protection
	(**)
B, F, J	plate (***)

* selected among a library including for each kind of layer more than 20 referenced materials

**some cloths and some perforated protections can also be considered as porous layers for the computation

***indeed: 1 or several identical plate(s) treated as a whole

- for an acoustic structure including a porous medium (i.e. polyester, rock wool, basalt wool, glass wool, foam ...for which the engineering data can be referenced or air): behavior taken into account up to the microscopic scale in relation with the properties such as flow resistivity [cf. fig. 12] and other parameters for a locally reacting absorber
- effect of a laminated lining (for each layer: different properties such as flow resistivity [cf. fig. 13] or other different parameters): taken into account
- effect of a cloth (i.e. fabric, unwoven...for which the engineering data can be referenced): taken into account [cf. fig. 14]
- for an acoustic structure including a perforated protection (i.e. perforated sheet with circular holes and square or hexagonal array, perforated sheet with square holes, infinite slots...for which the engineering data can be referenced): interaction of the protection with a porous medium at the front/at the rear taken into account [cf. fig. 15]
- for an acoustic structure including a thin plate (i.e. metal sheet, masonry, gypsum board, wood, glass ...for basic plates): perforated plates taken into account, extensional damping (for example: steel sheet + viscoelastic) or constrained damping (for example steel sheet + viscoelastic + steel sheet) taken into account, orthotropic plates (for example: corrugated plates, ribbed plates, profiled cladding....) taken into account
- effect of temperature/of pressure taken into account [cf. fig. 16] [cf. fig. 17]
- effect of back (rear atmosphere or impervious rigid back) taken into account [cf. fig. 18]

ITS

- engineering constants of thin plates equivalent to perforated plates, damped plates, orthotropic plates
- radiation ratio, (lowest & highest in case of orthotropic plates) critical frequency of thin plates & lowest
 natural frequency of thin plates (with the exception of plates with a constrained damping)

Report	Date	Page
PhR24-013	17-06-2024	22/45

Main displayed results for the whole acoustic structure (tables and graphs):

absorption coefficient at normal incidence: α0, absorption coefficient for a statistic incidence: αstat,
 Sabine's factor: αsab per 1/3 and 1/1 octave frequency band, unique index αw (figure below: for a porous medium with an impervious rigid back)

sound reduction index with sound leaks: Rstat per 1/3 and 1/1 octave frequency band, unique index Rw and correction terms (for a single leaf, or a double leaf or a triple leaf partition with 0 % coupling) (figure below: for a single isotropic thin plate with an atmospheric back)

 sound reduction index for a double-leaf partition with connections between thin plates with sound leaks: Rstat per 1/3 and 1/1 octave frequency band, unique index Rw and correction terms

- the results of the calculations are comparable with the standardized measurement: (in case of atmospheric back) see NF EN ISO 10140-2 Acoustics. Laboratory measurement of sound insulation of building elements. Measurement of airborne sound insulation and (in case of rigid impervious back) see NF EN ISO 354 Acoustics Measurement of sound absorption in a reverberation room and also ISO 10534-1 Acoustics Determination of sound absorption coefficient and impedance in impedance tubes Part 1: Method using standing wave ratio.
- acoustic power with the partition Lw1 (comparable with the acoustic power without partition Lw0) per
 1/1 octave frequency band

Isolation Technologie Services - SARL au capital de 7000 Euros - Siège social : 3 route du Mont Cindre F-69450 Saint Cyr au Mont d'Or Tél. +33(0) 952 36 35 31 - E-mail: contact@its-acoustique.fr - Internet: www.its-acoustique.fr

NODULE 3 Prediction of acoustic performance of duct walls

ITS Scope of computation

 design of duct walls for which the cross section is either rectangular or circular (for example: including folded spiral seam tubes)

Applications

 creation of a sound reduction by the means of the construction of a (soundproofing) duct wall/silencer wall: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- ✓ construction of ventilation inlet/outlet for enclosures for various noisy equipments such as fans, aero condensers, engines, gas turbines...
- ✓ construction of ventilation inlet/outlet of test benches...
- ✓ construction of stacks, exhaust silencers of gas turbines...

ITS <u>Computation scheme (bloc diagram)</u>

rectangular duct

ITS

Main/special features, main effects taken into account

design possible for 1 leaf acoustic structures (for the present revision of the software), with a rectangular or circular cross section (including folded spiral-seam ducts)

_			
	item	layer (*	*) ;
	В	plate (**	**) 1
		or B=B2+B1as sho	
	В	В	B2 B1
mo	basic nolithic plate	when monolithic the plate can be perforated	plate with extensional damping

* selected among a library including for each kind of layer more than 20 referenced materials

***indeed: 1 or several identical plate(s) treated as a whole

- for an acoustic structure including a thin plate (i.e. metal sheet, masonry, gypsum board, wood, glass ...for basic plates): perforated plates taken into account, extensional damping (for example: steel sheet + viscoelastic) or constrained damping (for example steel sheet + viscoelastic + steel sheet) taken into account, orthotropic plates (for example: corrugated plates, ribbed plates, profiled cladding....) taken into account
- effect of temperature/of pressure taken into account

ITS <u>Main displayed results for the whole acoustic structure (tables and graphs):</u>

 sound reduction index with sound leaks: Rstat per 1/1 octave frequency band, unique index Rw and correction terms (for a single leaf) (figure below: for a steel pipe with an atmospheric back)

R dif (dB)	f (Hz)		f (dB)	f (Hz)		f (dB)
100 -	·(nz)	1/3 oct	1/1 oct	1(42)	1/3 oct	1/1 oct
20	25	\$2,1		\$00	57,2	
	31,5	\$2,1	82,1	lk	57,2	57,2
	40	82,1		1,25k	57,2	
70	50	77,0		1,60k	52,4	
	63	77,0	77,0	2k	52,4	52,4
50	80	77,0		2,50k	52,4	
	100	72,1		3,15k	48,0	
40	125	72,1	72,1	4k	48,0	48,0
30	160	72,1		5k	48,0	
20	200	67,2		6,30k	45,2	
10	250	67,2	67,2	8k	45,2	45,2
	315	67,2		10k	45,2	
	400	62,2		12,50k	57,3	
10 100 1000 10000 f(Hz) 100000	500	62,2	62,2	16k	57,3	57,3
	630	62,2		20k	57,3	
			ref: Lw0	A	49,9	ref: Lw0

... etc

 the obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures

NODULE 4 Prediction of acoustic performance performance of straight ducts

ITS Scope of computation

design of components of a duct system with a constant cross section being either rectangular or circular

ITS <u>Applications</u>

 consideration of the sound reduction of the components of duct systems on the occasion of the evaluation of the sound levels at the extremity (mouth) of duct systems: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- construction of air conditioning systems as well as ventilation systems for enclosures for various noisy equipments necessitating duct systems with horizontal or vertical duct sections (stacks) such as fans, engines, gas turbines...
- construction of ventilation systems for auxiliary premises or buildings, test benches....

ITS Computation scheme (bloc diagram)

ITS Main/special features, main effects taken into account

- design possible with a rectangular or circular cross section (including folded spiral seam tubes)
- design possible for thin ducts (e.g. for conditioning systems applications) as well as for thick ducts (e.g. for stacks)

ITS

Main displayed results (tables):

- insertion loss without self noise of straight duct section Di' per 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)
- self noise of straight duct section Lw per 1/1 octave frequency band (as well as A-weighted overall value)
- sound power level downstream of considered straight duct section Lw1 per 1/1 octave frequency band (as well as A-weighted overall value)
- insertion loss with self noise of straight duct section Di per 1/1 octave frequency band (as well as Aweighted overall value with respect to a reference spectrum)

Di'	insertion lo	ss without se	lf noise								
f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A
Di' (dB)	2,4	2,4	2,4	1,2	0,6	0,6	0,6	0,6	0,6	0,6	2,7
Lw	self noise										
f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A
Lw (dB ref. 1pW)	8,2	6,0	2,5	-2,3	-8,2	-15,0	-22,2	-29,8	-37,4	-45,2	-6,0
Lw (dBA ref. 1pW)	-31,2	-20,2	-13,6	-10,9	-11,4	-15,0	-21,0	-28,8	-38,5	-51,8	
Lw1	sound power	r level downs	stream of con	isidered duct							
Lw1 f (Hz)	sound power 31	r level down: 63	stream of con 125	sidered duct 250	500	1000	2000	4000	8000	16000	A
					500 30,9	1000 25,5	2000 19,8	4000	8000 24,3	16000 -45,2	A 39,1
f (Hz)	31	63	125	250							
f (Hz) Lw1 (dB ref. 1pW) Lw1 (dBA ref. 1pW) Di	31 8,2 -31,2 insertion los	63 62,3 36,1 ss with self n	125 48,7 32,6 oise	250 37,4 28,8	30,9 27,7	25,5 25,5	19,8 21,0	22,3 23,3	24,3 23,2	-45,2 -51,8	
f (Hz) Lw1 (dB ref. 1pW) Lw1 (dBA ref. 1pW)	31 8,2 -31,2	63 62,3 36,1	125 48,7 32,6	250 37,4	30,9	25,5	19,8	22,3	24,3	-45,2	

(figure below: for a rectangular duct)

 the obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures

MODULE 5

ITS

Prediction of break-out noise

Scope of computation

design of components of a duct system with a cross section being either rectangular or circular

ITS Applications

 consideration of the sound emission of the components of duct systems on the occasion of the evaluation of the sound levels due to noise transmission trough the duct walls: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- ✓ construction of air conditioning systems as well as ventilation systems for enclosures for various noisy equipments necessitating duct systems with horizontal or vertical duct sections (stacks) such as fans, engines, gas turbines...
- construction of ventilation systems for auxiliary premises or buildings, test benches...

ITS <u>Computation scheme (bloc diagram)</u>

Bloc diagram in case of a silencer

• Bloc diagram in case of an empty duct

ITS Main/special features, main effects taken into account

- design possible either for straight ducts (with a rectangular cross section, or with a circular cross section - including folded spiral seam ducts) or for silencers
- design possible for thin duct casings (e.g. for conditioning systems applications) as well as for thick ducts casings (e.g. for stacks)

ITS Main displayed results (tables):

.

sound power level transmitted by the walls of duct / of silencer Lwout per 1/1 octave frequency band (as well as A-weighted overall value)

(figure below: for a rectangular duct)

Lw out sound power level transmitted by the walls of duct / of silencer													
f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A		
Lw out (dB ref. 1 pW)	12,7	55,3	37,7	19,2	4,3	-10,3	-24,8	-34,2	-32,0	-79,4	29,9		
Lw out (dBA ref. 1 pW)	-26,7	29,1	21,6	10,6	1,1	-10,3	-23,6	-33,2	-33,1	-86,0			

 the obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures

NODULE 5A Prediction of break-out noise of ducts with variable cross section

ITS Scope of computation

 design of components of a duct system with a cross section being rectangular (with a width being constant, with a height at duct section inlet being different from height at duct section outlet)

Applications

 consideration of the sound emission of the components of duct systems on the occasion of the evaluation of the sound levels due to noise transmission trough the duct walls: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- construction of air conditioning systems as well as ventilation systems for enclosures for various noisy equipments necessitating duct systems with horizontal or vertical duct sections (stacks) such as fans, engines, gas turbines...
- ✓ construction of ventilation systems for auxiliary premises or buildings, test benches...

ITS

Computation scheme (bloc diagram)

Bloc diagram in case of an empty duct: as in section 5 (downstream step to be considered only)

Main/special features, main effects taken into account

- design possible for ducts with a rectangular cross section
- design possible for thin duct casings (e.g. for conditioning systems applications) as well as for thick ducts casings (e.g. for stacks)

ITS Main displayed results (tables):

sound power level transmitted by the walls of duct / of silencer Lwout per 1/1 octave frequency band (as well as A-weighted overall value)

(figure below: for a rectangular duct)

Lw out	sound power level transmitted by the walls of duct / of silencer												
f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A		
Lw out (dB ref. 1 pW)	12,7	55,3	37,7	19,2	4,3	-10,3	-24,8	-34,2	-32,0	-79,4	29,9		
Lw out (dBA ref. 1 pW)	-26,7	29,1	21,6	10,6	1,1	-10,3	-23,6	-33,2	-33,1	-86,0			

• the obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures

MODULE 6 Prediction of acoustic performance of bends and junctions

ITS Scope of computation

design of components of a duct system: with a rectangular cross section, or with a circular cross section, or with mixed cross sections

ITS **Applications**

consideration of the sound reduction of the components of duct systems on the occasion of the evaluation of the sound levels at the extremity (mouth) of duct systems: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- construction of air conditioning systems as well as ventilation systems for enclosures for various noisy equipments necessitating duct systems with horizontal or vertical duct sections (stacks) such as fans, engines, gas turbines...
- construction of ventilation systems for auxiliary premises or buildings, test benches...

ITS Computation scheme (bloc diagram)

ITS Main/special features, main effects taken into account

design possible with a rectangular or circular cross section or with mixed cross sections .

ITS <u>Main displayed results (tables):</u>

Or junction

1

- insertion loss without self noise of bend Di' per 1/1 octave frequency band (as well as A-weighted . overall value with respect to a reference spectrum)
- self noise of bend or junction Lw per 1/1 octave frequency band (as well as A-weighted overall value)
- sound power level downstream of considered bend or junction Lw1 per 1/1 octave frequency band (as well as A-weighted overall value)
- insertion loss with self noise of bend or junction Di per 1/1 octave frequency band (as well as Aweighted overall value with respect to a reference spectrum)

(figure below: for a bend with a rectangular cross section)

	Di	insertion lo	ss without se	lf noise								
	f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A
	Di' (dB)	0,0	1,0	2,0	3,0	3,0	3,0	3,0	3,0	3,0	0,0	2,3
Í	Lw	self noise										
	f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A
	Lw (dB ref. 1pW)	-76,4	-84,1	-92,2	-100,4	-108,9	-117,7	-126,8	-136,0	-145,5	-155,2	-103,2
	Lw (dBA ref. 1pW)	-115,8	-110,3	-108,3	-109,0	-112,1	-117,7	-125,6	-135,0	-146,6	-161,8	
Í	Lw1	sound powe	r level downs	stream of cor	sidered bend	1						
	f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A
	Lw1 (dB ref. 1pW)	-76,4	63,7	49,1	35,6	28,5	23,1	17,4	19,9	21,9	-155,2	39,5
	Lw1 (dBA ref. 1pW)	-115,8	37,5	33,0	27,0	25,3	23,1	18,6	20,9	20,8	-161,8	
	Di	insertion lo	ss with self n	oise								
	f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	Α
	Di (dB)	-123,6	1.0	2.0	3.0	3.0	3,0	3,0	3.0	3.0	-44,8	2,3

the obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures

MODULE 7

Prediction of nozzle reflexion

ITS Scope of computation

design of components of a duct system: with a rectangular cross section, or with a circular cross section

ITS Applications

consideration of the sound reduction of the components of duct systems on the occasion of the evaluation of the sound levels at the extremity (mouth) of duct systems: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- ✓ construction of air conditioning systems as well as ventilation systems for enclosures for various noisy equipments necessitating duct systems with horizontal or vertical duct sections (stacks) such as fans, engines, gas turbines...
- ✓ construction of ventilation systems for auxiliary premises or buildings, test benches...

ITS <u>Computation scheme (bloc diagram)</u>

ITS <u>Main/special features, main effects taken into account</u>

design possible with a rectangular or circular cross section

ITS Main displayed results (tables):

- insertion loss without self noise Di' per 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)
- self noise Lw per 1/1 octave frequency band (as well as A-weighted overall value)
- sound power level downstream Lw1 per 1/1 octave frequency band (as well as A-weighted overall value)
- insertion loss with self noise of bend Di per 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)

Di	insertion loss without self noise														
f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A				
Di' (dB)	15,0	15,0	10,2	5,3	2,1	0,7	0,2	0,1	0,1	0,1	0,4				
Lw	self noise														
f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A				
Lw (dB ref. 1pW)	-400,0	-400,0	-400,0	-400,0	-400,0	-400,0	-400,0	-400,0	-400,0	-400,0	-392,8				
Lw (dBA ref. 1pW)	-439,4	-426,2	-416,1	-408,6	-403,2	-400,0	-398,8	-399,0	-401,1	-406,6					
Lw1	sound nower	-439,4 -426,2 -416,1 -408,6 -403,2 -400,0 -398,8 -399,0 -401,1 -406,6 und power level downstream of considered duct													
		· · · · · · · · · · · · · · · · · · ·													
f (Hz)	31	63	125	250	500	1000	2000	4000	8000	16000	A				
f (Hz) Lwl (dB ref. 1pW)					500 127,9	1000 129,3	2000 129,8	4000 129,9	8000 129,9	16000 129,9	A 136,7				
	31	63	125	250											
Lw1 (dB ref. 1pW)	31 115,0 75,6	63 115,0	125 119,8 103,7	250 124,7	127,9	129,3	129,8	129,9	129,9	129,9					
Lw1 (dB ref. 1pW) Lw1 (dBA ref. 1pW)	31 115,0 75,6	63 115,0 88,8	125 119,8 103,7	250 124,7	127,9	129,3	129,8	129,9	129,9	129,9					

(figure below: for a mouth with a circular cross section)

 the obtained results are not comparable with standardized measurement due to the lack of documents formalizing corresponding measurement procedures

NODULE 8 ITS Scope of computation

ITS

Prediction of the sound impact of duct systems

prediction of the sound impact of duct systems including components such as silencers (dissipative or resonant), straight ducts sections, bends with a rectangular cross section, or with a circular cross section, or with mixed cross sections (for some components).

Applications

consideration of the sound reduction of the components of duct systems on the occasion of the evaluation of the sound levels at the extremity (mouth) of duct systems as well as sound levels due to noise transmission trough duct walls: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- construction of air conditioning systems as well as ventilation systems for enclosures for various noisy equipments necessitating duct systems with horizontal or vertical duct sections (stacks) such as fans, engines, gas turbines...
- ✓ construction of ventilation systems for auxiliary premises or buildings, test benches...

ITS Computation scheme (bloc diagram)

Bloc diagram regarding the longitudinal noise propagation i.e. for the computation of the sound power level downstream of the duct system:

Note: this bloc diagram is used within a waterfall computation for all the components of the system, referred to as C1 to C10)

	acoustic power with silencer including self noise & insertion loss with self noise [AU]
Lw0	C1] [C2] [C3] [C4] [C5] [C6] [C7] [C8] [C9] [C10]
	diagram regarding the transverse noise propagation i.e. for the computation of the sound r level transmitted by the walls of the duct system:
Lw0	EC1] [C2] [C3] [C4] [C5] [C6] [C7] [C8] [C9] [C10]
ITS Main/special fe	eatures, main effects taken into account

- design possible for silencers (dissipative or resonant), straight ducts sections, bends with a
 rectangular cross section, or with a circular cross section, or with mixed cross sections (for some
 components)
- design possible for thin duct casings (e.g. for conditioning systems applications) as well as for thick ducts casings (e.g. for stacks)
- design possible in case of acoustic performance computed with software SILDIS or not (*Bring-Your-Own* approach) or mixed approach

Main displayed results (tables):

- Main displayed results regarding the longitudinal noise propagation i.e. for the computation of the sound power level downstream of the duct system:
 - sound power level downstream of each considered component of the duct system Lw1 per 1/1 octave frequency band (as well as A-weighted overall value)
 - insertion loss with self noise of each considered component of the duct system Di per 1/1 octave frequency band (as well as A-weighted overall value with respect to a reference spectrum)
 - sound power level of the silenced source Lw1calc per 1/1 octave frequency band (as well as A-weighted overall value)
 - sound pressure level at a specified distance of the silenced source Lp1calc per 1/1 octave frequency band (as well as A-weighted overall value)

(table below: for a silencer + a bend + a duct with a circular cross section)

w1 Sound power level downstream of components

	Component	Matrix / f(Hz)	31	63	125	250	500	1000	2000	4000	8000	A	С
C1	cylindrical attenuator without core	BYO17	-197,0	62,7	47,1	30,6	15,5	-4,9	-1,6	10,9	13,9	37,7	62
C2	bend	BYO18	-195,2	62,7	47,1	30,8	16,6	6,7	1,2	8,0	10,9	37,7	62
C3	duct	BYO19	-194,0	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
C4	0	ZER10	-193,0	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
C5	0	ZER10	-192,2	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
C6	0	ZER10	-191,5	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
C7	0	ZER10	-190,9	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
C8	0	ZER10	-190,4	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
C9	0	ZER10	-189,9	62,6	47,0	30,6	16,4	<u>6.</u> 4	0,9	7,7	10,6	37,6	61,9
C10	0	ZER10	-189,5	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
Di	Insertion loss of components with flow	<u>/ noise</u>		9				1					
Component Matrix / f(Hz) 31 63 125 250 500 1000 2000 4000 8000 A C													
C1	cylindrical attenuator without core	BYO17	-3,0	2,0	4,0	8,0	16,0	31,0	22,0	12,0	11,0	3,4	2,1
C2	bend	BYO18	-1,8	0,0	0,0	-0,2	-1,1	-11,6	-2,8	2,9	3,0	0,0	0,0
C3	duct	BYO19	-1,2	0,1	0,1	0,2	0,2	0,3	0,3	0,3	0,3	0,1	0,1
C4	0	ZER10	-1,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
C5	0	ZER10	-0,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
C6	0	ZER10	-0,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
C7	0	ZER10	-0,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
C8	0	ZER10	-0,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
C9	0	ZER10	-0,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
C10	0	ZER10	-0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Lw1calc	Sound power level of the silenced nois	se source	31	63	125	250	500	1000	2000	4000	8000		с
												A	
	Lw1calc (dB ref. 1pW)		-189,5	62,6	47,0	30,6	16,4	6,4	0,9	7,7	10,6	37,6	61,9
	Lw1calc + A weighting (dB ref. 1pW)		-228,9	36,4	30,9	22,0	13,2	6,4	2,1	8,7	9,5]	
Lp1calc	Lw1calc + A weighting (dB ref. 1pW) Sound pressure level of the silenced n			,				,	2,1	Lp1calc-Lw	9,5 1calc-DI (dB)	-15,5	
Lp1calc	Sound pressure level of the silenced n		31	63	125	250	500	1000	2,1	Lp1calc-Lw	1	A	С
Lp1calc	Sound pressure level of the silenced n	oise source		,				,		Lp1calc-Lw	1calc-DI (dB)		C 46,4

Main displayed results regarding the transverse noise propagation i.e. for the computation of the sound power level transmitted by the walls of the duct system:

 sound pressure level at a specified distance of each component Lpoutcalc per 1/1 octave frequency band (as well as A-weighted overall value)

(figure below: for a silencer + a bend + a duct with a circular cross section)

	Component	31	63	125	250	500	1000	2000	4000	8000	A	С
C1	cylindrical attenuator without core	92,0	89,0	86,0	83,0	80,0	77,0	74,0	71,0	68,0	82,8	95,0
C2	bend	91,0	88,0	85,0	82,0	79,0	76,0	73,0	70,0	67,0	81,8	94,0
C3	duct	90,0	87,0	84,0	81,0	78,0	75,0	72,0	69,0	66,0	80,8	93,0
C4	0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-192,0	-189,5
C5	0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-192,0	-189,5
C6	0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-192,0	-189,5
C7	0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-192,0	-189,5
C8	0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-192,0	-189,5
C9	0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-199,0	-192,0	-189,5
C10	0	-199,0	-199,0	-199,0	-199.0	-199,0	-199,0	-199,0	-199,0	-199,0	-192,0	-189,5

Lpoutcalc Sound pressure level of the silenced noise source (un-weighted)

MODULE 8A

Prediction of stacks directivity

ITS Scope of computation

prediction of the sound impact of piping & duct systems ends

ITS <u>Applications</u>

.

evaluation of the noise emissions at the extremity (mouth) of piping & duct systems: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

✓ stacks for fans, engines, gas turbines...

Main/special features, main effects taken into account

✓ industrial process exhausts...

ITS <u>Computation scheme (bloc diagram)</u>

Not applicable

ITS

- angle with respect to stack axis
- stack radius
- speed of sound

ITS Main displayed results (tables):

directivity index (1/3 & 1/1 octave bands)

(screenshot below: for a an exhaust duct with small diameter)

Isolation Technologie Services													
ITC			predict	ion of t	he direc	tivity of	f a stack						
acoustique													
angle model selection		45°											
stack radius	a (m)	0,1											
speed of sound	c (m/s)	340											
Directivity index accoring to angle model selection		DI (dB)	0,3	0,3	0,3	0,7	1,5	2,2	2,7	2,9	3,1	2,7	

MODULE 8B

Prediction of atmospheric sound absorption

ITS Scope of computation

prediction of the attenuation of sound in relation to propagation path through atmosphere

ITS Applications

.

- evaluation of the noise impact of sound sources outdoor: protection of workers, protection of environment, energy sector in particular
- room acoustics: protection of workers, measurement rooms, acoustic comfort in buildings

ITS <u>Computation scheme (bloc diagram)</u>

Not applicable

ITS Main/special features, main effects taken into account

- ambient atmospheric pressure
- ambient atmospheric pressure
 ambient atmospheric temperature
- relative humidity
- propagation path length

ITS <u>Main displayed results (tables):</u>

- atmospheric attenuation coefficient (1/3 & 1/1 octave bands)
- atmospheric attenuation for a given propagation path (1/3 & 1/1 octave bands)

(screenshot below: example)

					Attén	uation du	son lore	i de sa p	ropagati	on à l'air l	ibre - Ca	lcul de l'a	bsorption	atmosp	hérique																
				Atten	uation o	f sound o	durina on	poagatio	n outdoo	v - Calcul	ation of t	he absorp	ation of so	ound by	the atmos	phere															
ssian atnospherique ambiante (ambiant atnospheric																															
oure) Pa (Pa)	101325																														
pérature atmosphérique ambiante (ambiant atmospherit																															
perature)1(%)	15								Technol	ogle Servic	:85																				
dté relative (relative humidity) tr (%)	50								17	ГС																					
									11																						
									-	- acoustig	ve																				
		Hz				50	63	00	100	125	160	200	250	110	411	764	636	 1000	1784	1004	-	2500	2100	4000		6300	0000	10000	12500	16000	20000
Iciael d'altéruation atmosphérique (atmospherie attenuation coefficient')	() (f)()	a (d8/m)																			1.08E-02 1										
cient d'atténuation atmosphérique (atmospheric attenuation coefficient)		a (d6/m) a (d5/km)																			1.08E-01 1										
	405,0												(110-10)	1,002-00	1012-00	2,242.100	2,000.000	 		1,000-001	1,042-071		2,242-01	2,002.01	2,542.101	a ancient					
nation atmosphèrique cacutée pour les fréquences centrales o		icleve laterospharic attenu	ation comp		central free		17 octave he	m#1.							1012-00	2240.00	2,000,000			1342.001	1,002-0111		2,242-01	2,002.001		a ere er					
nation atmosphérique caculée pour les fréquences centrales d ance certaie de 1/1 octave	les bandes de 13 o								2950	4353	8099	16000	A	UN	1.0.2.00	1242-00	2,042,000		242.10	1.000			2,002.011	2,002,001	2000101						
nuation atmosphèrique caculté pour les frèquences centrales d unce centrale de l'il estave undes atmosphèrique « réduction de la puissance acoustique robaie 1911	les bandes de 13 o	icleve laterospharic attenu	ation comp		central free		17 octave he	m#1.							1,012-00	1242-00	2,042,000						2,002.011	2,002,001	2000101						
mation atmosphèrisse saoulle pour les frèquences certrales d ance certuile de 1/1 octave unter atmosphèrique - rélace parèrie atmosphèrique - rélacion d'aricel sound pouer 111 octave)	les bandes de 112 o octava	ntere Latensepherik attens Hz	etion comp 31,5 0,0	eded for the 63 8,1	Central free 125 8,3	250 Q.G	17 octave lee 100	noth1, 1000 2,1	2000	4000 15,3	6000 45,9	19000	A 5,3	UN		1242-00							2,00.01	2012-01							
pour de trajet de propagation (propagation part) sergit) is (m) metidos attroschéristes assolits pour les filsences centrales d astro centrale de 11 celors autre attrajet de 11 celors autre attrajet de 11 celors autre attrajet de 11 celors de la presence accurage name foi pour de 11 celors de la presence accurage name foi filse de attrajet de la constante de la constante foi filse de attrajet de la constante de la constante de la constante attrajet de la constante de la constante de la constante autrestrajet de la constante constante constante attrajet de la constante de la constante constante attrajet de la constante constante constante constante de la constante de la constante constante constante constante de la constante de la constante constante constante constante de la constante de la constante constante constante constante constante constante constante constante constante de la constante attrajet de la constante	fes bandes de 12 o octave a (dim)	nteve Letenssoherin attens Hz afra-Lw0 - Lw1 (d3)	31,5 0,0 0,000+00	63 0,1 2,005-04	025 0.3 0.3	0,6 1,240-03	12 octave les 500 1,1 2,276-03	1000 2,1 4,338-87	2500 5.3 1.098-8	4000 15,3 2 3,118-42	0000 45,9 9,482-02	10000 141,2 1 2,916-01	A 5,3 1,088-62	LN 2.6 5.365-03		2246.00	2,942,700						2,00.01	2011-01							
mation atmosphirisse savalle pour les frèquences centrales o anno contaite du l'induse union atmosphirique - rélaction de la poissance accuration initiat appendi atmusédien « médición al initial savari pour tri conten) fauer atminusce annophirique (atmosphirie atmusédie contercent)	les bandes de 112 o octave (a (dSim) (a (dSim)	ictore Latercaphenic attend Hz affacturd - Lart (dd) acturd - Lart (dd)	31,5 0,0 0,000+00	63 0,1 2,005-04	025 0.3 0.3	0,6 1,240-03	12 octave les 500 1,1 2,276-03	1000 2,1 4,338-87	2500 5.3 1.098-8	4000 15,3 2 3,118-42	0000 45,9 9,482-02	10000 141,2 1 2,916-01	A 5,3 1,088-62	LN 2.6 5.365-03			2,000						2,000.001	2,002,001							
uestion atmosphilispin calculate pour les filespeness certaines de ana certaines de l'incerne ana certaine de l'incerne particulations de la constance en analysis orden l'in- spector developping analysis analysis and environment or est estimulation atmosphiling (analysis en allemantes conference tor et estimulate atmosphiling (analysis) et allemantes conference as de particulate atmosphiling (analysis) et allemantes atmosphiling et allem	les bandes de 12 o octave a (dilim) a (dilim) a (dilim) aban (30 9613.1	Hz Hz afra Lin O - Lin 1 (dD) a + Lin C - Lin 1 (dD) a + Lin 1 (dD	31,5 0,0 0.008+00 0.008+00	63 0,1 2,000-04 2,000-01	0,3 0,3 0,195-04 0,195-01	250 0,6 1,246-03 1,246-09	17 octowe he 500 1,1 2,278-00 2,278-00	1000 2,1 4,338-0 4,338-0	2500 5.3 1.098-8	4000 15,3 2 3,118-42	0000 45,9 9,482-02	10000 141,2 1 2,916-01	A 5,3 1,088-62	LN 2.6 5.365-03																	
waters attended historie zakowie pose ina fiskanskie kartistie of sin strangelikanie in fiskanskie in spakanskie skonologie statustie tier of attended strangelikanie in spakanskie skonologie statustie kart of attende attende strangelikanie attendere skonologie statustie of attended strangelikanie attendere strangelikanie attendere offenter in attende attende strangelikanie attendere strangelikanie attendere strangelikanie attende strangelikanie attendere strangelikanie attendere strangelikanie attende strangelikanie attendere attendere attendere strangelikanie attende strangelikanie attendere strangelikanie attendere s	tes bandes de 12 o octave a (dBim) a (dBim) etas (30 Mm) etas (30 Mm) fes bandes de 13 o	Hz Hz afra Lin O - Lin 1 (dD) a + Lin C - Lin 1 (dD) a + Lin 1 (dD	31,5 0,0 0.008+00 0.008+00	63 0,1 2,002-04 2,002-01	0,3 0,3 0,195-04 0,195-01	250 0,6 1,246-03 1,246-09	17 octowe he 500 1,1 2,278-00 2,278-00	1000 2,1 4,338-0 4,338-0	2500 5.3 1.098-8	4000 15,3 2 3,118-42	0000 45,9 9,482-02	10000 141,2 1 2,916-01	A 5,3 1,088-62	LN 2.6 5.365-03																	
unities attracts definitions associate pose les historentes y centrains a en centrain de la finitional de la construcción de la construcción de la constru- tion de la construcción de la construcción de la construcción de la constru- den el construcción de la construcción de la construcción de la constru- den el construcción de la construcción de la construcción de la con- den el construcción de la construcción de la construcción de la con- den el construcción de la construcción de la construcción de la con- den el construcción de la construcción de la construcción de la con- tente activitada de la construcción de la construcción de la con- tente activitada de la construcción de la construcción de la con- tente activitada de la constru- cción de la construcción de la construcción de la construcción de la con- tente activitada de la constru- cción de la construcción de la construcción de la construcción de la con- den el construcción de la construcción de la construcción de la con- dense activitada de la constru- da de la construcción de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activitada de la construcción de la construcción de la con- dense activi	tes bandes de 12 o octave a (dBim) a (dBim) etas (30 Mm) etas (30 Mm) fes bandes de 13 o	Hz Hz arkaldo-Luri (20) arkw0-Lari (200m) arkw0-Lari (200m) arkw0-	11.5 0.0 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.0000-0000-00 0.0000-0000-0000-0000-0000-0000-0000-0000-0000	63 0,1 2,002-04 2,002-01 udeof for the 63	125 0.3 0.180.04 0.180.04 0.180.01	2000nsties of 7 0,6 1,246-03 1,246+00 2000sties of 1 253	10 octave he 1,1 2,276-00 2,276-00 11 octave he 100	1000 2,1 4,338-0 4,338-0 4,338-0 1000	2000 5.3 0 1,006-0 0 1,006-0 2000	4000 15,3 2 3,198-82 6 3,198-01 4000	0000 45,9 9,402-01 9,402-01 8,402-01	10000 141,2 1 2,916-01 1 2,916-02 16000	A 5,3 1,096-02 1,006-21	LN 2,6 5,386-03 6,386-09		2240-00															
also attorised integrate appring to your text the theorems and the section of the	les lamites de 12 o octave (a (dilm) (a (dilm) etan 150 2013-1 des bandes de 15 o octave	ictive Laboranovania attense Ha arta-Lund-Lund (85) a-Lund-Lund (85) a-Lund-Lund (85) ictive Laboranovania attense Ha a-Lund-Lund (85)	11.5 0.0 0.000-00 0.000-00 0.000-00 0.000-00 0.000-00 0.0 0.	0000 for the 63 0,1 2,000-04 2,000-01 0,000-01 0,000 for the 63 0,1	0100 0100 0100 0100 0100 0100 0100 010	200000500 of 7 0.6 1,246.03 1,	17 octave be 100 1,1 2,276-00 2,276-00 2,276-00 2,276-00 1,1	1000 2,1 4,338.42 4,338.42 4,338.42 4,338.43 4,338.43 1000 2,8	2000 5.3 1,006-8 0 1,006-9 2000 5.2	4000 15,3 2 3,198,42 1 3,152-01 4300 17,6	0003 45,3 9,485,42 9,482,40 10003 42,4	19000 141,2 1 2,918-01 2,918-02 19000 193,4	A 5,3 1,096-02 1,096-01 A 5,3	LN 2,6 5,366-03 5,366-00 LN 2,6																	
untion attivosación que caso de pore los historioses centrales de esca antenidad de la maisma attivosación en estado en la pasasora aconadar en tenter UT aportos denación e entreforma en la pasa para de la como a de attivosación en estado en la como a como de la como en el administra attivosa de las del como de la como en el administra attivosa de las del como de las del entreforma de las del como de las del como de las del entreforma de las del como de las del como de las del autora attivos attivosa de las del las del como de las del autora attivos attivosa del como de las del las del como del como del autora attivos attivosa del como de las del las del como del como del autora attivosa del como del como de las del las del como del como del autora attivosa del como del como del como del como del como del autora attivosa del como del como del como del como del como del autora attivosa del como del como del como del como del como del autora attivosa del como del como del como del como del como del autora attivosa del como del como del como del como del como del autora attivosa del como del como del como del como del como del autora attivosa del como del como del como del como del como del como del autora attivosa del como del autora attivosa del como del como del como del como del como del como del autora attivosa del como del autora attivosa del como del com	les bandes de 12 o octave a (dilm) a (dilm) bio (dilm) bio (dilm) bio (dilm) bio (dilm) clave a (dilm)	Hz Hz arkaldo-Luri (20) arkw0-Lari (200m) arkw0-Lari (200m) arkw0-	11.5 31.5 0.0 0.000-00 0.000-00 0.000-00 0.000-00 31.5 0.0 3.736-05	elect for the 63 6,1 2,005-04 2,005-04 43 6,1 1,425-04	125 0.3 0.195.04 0.195.04 0.195.04 0.195.04 125 0.2 4.795.04	2000 c c c c c c c c c c c c c c c c c c	17 octove he 190 1,1 2,278-00 2,278-00 2,278-00 1,1 1,1 2,246-00 1,1	mdb). 1000 2,1 4,338-0 4,338-0 1000 2,0 4,168-0 4,168-0	2000 5.3 1.006-0 1.006-0 2000 5.2 1.006-0	4003 15,3 2 3,192,42 1 3,192,40 4303 17,5 2 3,026,42	0000 45,9 9.487.42 9.487.42 9.487.42 9.487.42 9.487.41	19000 1412 1 2,916-01 1 2,916-02 19000 193,4	A 53 1,086-02 1,006-01 A 53 1,086-02	LNi 2,6 5,366-03 6,366-09 LNi 2,6 5,366-03																	

Prediction of control valves aerodynamic noise

ITS <u>Scope of computation</u>

prediction of the external sound pressure level generated in a control valve and within adjacent pipe expanders by the flow of compressible fluids, considering only single-phase dry gases and vapours and based on the perfect gas laws

ITS Applications

 evaluation of the noise impact of industrial processes exhausts outdoor: protection of workers, protection of environment, energy sector in particular

Not applicable

ITS Main/special features, main effects taken into account

- control valves parameters
- process parameters

ITS <u>Main displayed results (tables):</u>

- sound power level (OA)
- generated peak frequency
- sound power level (1/3 & 1/1 octave bands)
- Mach number at valve outlet

(table below: example)

Prediction of jet noise (including safety valves noise)

ITS <u>Scope of computation</u>

prediction of the external sound levels generated by a jet i.e. a fluid flow between a high pressure zone & a low pressure zone: either at extremities of a component of a piping system (excluding control valves, including safety valves) or at its end (discharge) for a compressible fluid, considering only single-phase dry gases and vapours and based on the perfect gas laws

ITS Applications

 evaluation of the noise impact of gas discharges from safety valves or pipes outdoor: protection of workers, protection of environment, energy sector in particular

ITS <u>Computation scheme (bloc diagram)</u>

Not applicable

ITS Main/special features, main effects taken into account

- high pressure zone parameters
- low pressure zone parameters
- piping component parameters

ITS <u>Main displayed results (tables):</u>

- sound power level (OA)
- generated peak frequency
- sound power level (1/3 & 1/1 octave bands)

(table below: example)

				jet	without d	ittuser (8	safety va	lves)						
High pres	ure conditions								Low pro	essure conditio	ns			
Pressu	re Php (Pa)		1,743E+05					P	ressure	Plp (Pa)		1,010E+05		
Temperatu	re Thp (K)		311,00					Temp	erature	Tlp (K)		311,00		
Dens	ity 1/vhp (kg/m3)		1,955						Density	rolp (kg/m3)		1,133		
Speed of sou			353,0					Speed o		clp (m/s)		353,3		
Mach numb			1,000					Mach		Mlp		0,900		
Veloc			353,0						Velocity	Vlp (m/s)		300,0		
Isentropic expone			1,4000						_					
			1,4000											
Miscellan														
Pressure ratio multiplica			1,893					anded Jet Normalized		EJNV		0,999		
Pressure super ra			3,267				Density & Temp	perature Combined Par	rameter	DTCP		1,726		
Pressu	re Php x PRM (Pa)		3,300E+05											
		turbulent	choked	undefined										
Model for	acoustic efficiency η	ZER	FRA	ZER		ER-EX,EDF,FRA	ZER							
					HAN, BER, FRA,	HEL,ZER								
					API,ISO,C&M,V	DI, BUR, 3733, TUP	NOR,ZER							
Nozzle diame	er d (m)		0,0500											
NUZZIE UIdirie	er u(iii)		0,0500											
Downstream pipe diamet			0,05000											
ownstream pipe wall thickne	ss t(m)		0,00156											
Consideration of downstream	pipe diameter for peak frequency (0/1) ?		0											
		turbulent	choked	undefined										
					050 0 504 0	10						0.005.04	(_
Model fo	r Strouhal number St	BYO	BYO	BYO	BER-C, FRA, B	0	Strouhal number	for peak frequency calo	culation	Stp		2,00E-01	for model BYC	J on
		turbulent	choked	undefined										
	Model for spectrum	BER-T	HAN	HAN	IEC,IEC-3RD,R	W,HAN,FRA,BEF	R-T,BER-C,TUP,3	733						
										unsilenc	ed noise			
		turbulent	choked	undefined					Γ		Lwi(f) (dB ref.			
Sound powe	r level Lwi (dB ref. 1pW)		154,9	-200,0						f (Hz)	1pW)			
	,									16	117,9			
	f _o (Hz)	1412	1412	1412						31	124.6			
	f_oct (Hz)	1,000E+03	1.000E+03	1,000E+03						63	131,3			
	poor (ne)	1,0001-03	1,0002-03	1,0002+03					+	125	137,3			
	Madal froft	NAT	NAT	NAT	NAT,OCT				-	250	137,3			
	Model for fp	INPA I	INPA I	INPA 1	na1,001					250	142,4			
	L1 (dB)		143.5						+	1000	140,0			
Cound account loval											149,2			
Sound pressure level	L1 (dBA)		143,3							2000	149,1 146,5			
	L30 (dB)		114,2							4000				
(ref. 20µPa)	L30 (dBA)		114,0							8000	141,5			
(ref. 20µPa)														
(ref. 20µPa)	L1 = sound pressure	level at 1 m from	the point of the	have heards	n enherical e	dina				16000 A	135 154,5			

Prediction of piping systems discharge parameters

Scope of computation

prediction of flow indicators for sets of components through which the discharge of a fluid occurs, from a reservoir towards atmosphere via a pipe

<u>Subscripts</u> r, i, u, d, p, e: location along piping system path reservoir inlet upstream (e.g. from a valve) downstream (e.g. from a valve) penultimate (e.g.silencer inlet) exit (e.g. silence routlet)

ITS Applications

.

evaluation of the noise impact of industrial processes exhausts outdoor: protection of workers, protection of environment, energy sector in particular e.g. blowdown lines with or without valves

Computation scheme (bloc diagram)

Not applicable

ITS Main/special features, main effects taken into account

- fluid thermodynamic parameters
- piping system resistance parameters
- most comprehensive set of output data available for ideal gas (1 phase), nevertheless minimum set of output data available for all gases (including saturated water steam)

ITS <u>Main displayed results (tables):</u>

- exit line status (choked or non-choked)
- exit pressure
- discharge capacity & mass flow rate

Additional output data relevant in case of ideal gases (at various locations along piping system path):

- temperature
- density
- speed of sound
- Mach number
- (gas) speed
- Reynolds number Re (dimensionless)

(table below: example)

MODU	LE 8F Determination of the performance & sizing of safety valves
ITS	Scope of computation
	 prediction of discharge capacity of safety valves
ITS	Applications
acoustique	 Sizing of safety valves in the context of engineering studies of pressurized fluid networks discharging to atmosphere
	Computation scheme (bloc diagram)
	 Not applicable
ITS	Main/special features, main effects taken into account
acoustique	 design possible for steam or undefined fluid
	Main displayed results (tables):
	 discharge capacity mass flow rate when flow area is known (screenshot below: example)

Critical flow conditions	2 (01)	1													
	(01)				hooffetic										
parameter/	no.iei	releving			effical		parameter / pr	ad .	back						
pre-sec	P Pai	6.151E-06		Pc(Pa)	3,245E+06			P (Pa)	1010E+05						
	P (ber)			Pc.bw)				P(bar)							
Pressure	Platri		Critical pressure	Pc(atro)			Pressure	Pidel							
	P (kp/cm2)			Pc(kp(cm2)				P (kaloný)							
	Plasi			Pt (ps)				P (ps)							Dryness fraction
	T(K)	260.15		Tc (K)	244.29			T(K)	90.61						of wet gas at the value inject at
Temperature	179		Critical temperature	8(*C)			Temperature								celleving
	TF(F)	68.00		TFc(F)				TF(F)	-295.55						pressure and
Density	p (kp/m3)	0.22	Oritical density	pc (kgin3)	45 975		Density	p (kg/m3)	3.85						temperature
Dormy	p(b/cut)		CLEAR AND MAL	pc (b / cu t)			Dennet	p(blouf)							
	c (mh)	344.8	Critical speed of sound	oc (mb)	314.6			c (mh)	191.6						80
Speed of sound	v (85)			wc (85)			8peed of sound	w(85)							1.0000
Mach number	M	0.0000	Critical Mach number	Mo	1.000		Mach number	M	3.3430						
Speed	Y (mis)	0.0	Critical velocity	Vc (mis)	314.6		Speed	V (mb)	640.4						Derated discharge
	w (8%)	0.0		Vc (\$5)	5132.0			¥(85)	2101.2					Discharge coefficient	coefficient
Discharge capacity	G (kg/sim2)	14462.2	Critical decharge capacity	Gc (kg/s/m2)	14462.2									Kd	Kdr
	G(kghime2)	52.064		Gc (kgh/mm2)	52.064									0.9000	0.87
Relative discharge capacity	6/6c+6/6hz/h	1.000	Critical relative discharge capacity	6/6c-6/6*rg/11	1.000										
Netalite discharge capacity	000+0012[]	1000	Crica realive ascharge capacity	000+0012()	1000					 					
calculation of capacity is e-mass fip	a rate) when flow area is kno	10 N			hpothetic										considering Kith &
					etical									considering Kd	80
	Dimi	0.07020		mc (kgh)	65.953							m (kgh)	65.953	59.358	\$7.379
Diameter	D(mm)	7.620E-01		mc(kgN)						-		m (kgh)	237431.3	213688.2	200565.3
	Direi	3000E+00	Critical mass flow rate	mc (th)							Mass fow rate	m(2h)	237.431	213.688	206.565
				mc (b/t)								m (6A)	523536.1	471182.5	495478.4
	5 (m2)	4.560E-03													
Circular cross section	\$ (mm2)	4560.4													
	S (sq in)	7.069E-00													
						_				 _		_			_
calculation of flow area, when capa	cityá e mass fow ratej is kn	980			hpothetic									considering Kd	considering Kdr &
					effical								_		80
				A (m2)	3.457E-04						Required flow	A (m2)	3.457E-04	3841E-04	3974E-04
	m (kg/s)	5.000													
Retained room for rate	m (kgh)	19000-0	Required critical flow area	A(mmZ)							370	A (mm2)	345.7	384.1	387.4
Required mass flow rate	m (kgh) m (th)	18000-0	Required critical flow area	A (mm2) A (sqin)	345.7 5.3880.01						area	A (mm2) A (mm2)	345.7 5.3546-01	384.1 5354E-01	387.4 6.160E-01
Required mens fow rate	m (kgh)	19000-0	Required critical flow area	A (sq in)	5.2500-01						area	AND	5.3646-01	5954E-01	6.160[-01
Required mass flow rate	m (kgh) m (th)	18000-0		A(sqin) O(tr)	1.1586-01 2.1586-02						area Required	Alterni (m)	53666-01 2066E-02	\$354E-41 2:212E-82	£ 180(-01 2:340E-02
Required mans flow rate	m (kgh) m (th)	18000-0	Required critical flow area	A(sq in) (in) (in)	5.268E-02 2.068E-02 2.068E-01							4(m) (m)	5.356E-01 2.056E-02 2.096E-01	5/8548-01 2/21/2E-02 2/21/2E-01	6.100E-01 2.240E-02 2.240E-01
Required most flow rate	m (kgh) m (th)	18000-0		A(sqin) O(tr)	1.1586-01 2.1586-02						Required	Alterni (m)	53666-01 2066E-02	\$354E-41 2:212E-82	£ 180(-01 2:340E-02

MODU	E 8G Simulation of the discharge of a fluid trough a valve vent stack
ITS	Scope of computation
	 sizing of valves vent stacks
ITS	Applications
	 Sizing of safety valves vent stacks in the context of engineering studies of pressurized fluid networks discharging to atmosphere
	Computation scheme (bloc diagram)
	Not applicable
ITS acoustique	Main/special features, main effects taken into account
	 design possible for superheated steam or saturated steam

ITS Main displayed results (tables):

 pressure, temperature, density, sound speed, Mach number, gas speed at various locations: valve exit, vent stack inlet, vent stack outlet (screenshot below: example)

		Choking ? (0/1)		Choking ? (0/1)
	Based on model LIA	1	Based on model LIA	1
Parameter / point		valve exit (2)	vent stack inlet (3)	vent stack outlet (4)
	P (Pa)	2.124E+05	3.245E+05	1.227E+05
	P (MPs)	0.21	0.32	0.12
Pressure	P (bar)	2.12	3.25	1.23
Pressure	P (atm)	2.10	3.20	1.21
	P (kp/cm2)	2.17	3.31	1.25
	P (psi)	30.80	47.07	17.79
	Т(К)	610.77	685.88	609.64
Temperature	t('C)	337.62	412.73	336,49
	T(F)	639,71	774.92	637.69
Density	p (kg/m3)	0.757	1.030	0.437
Density	p (lb/cuft)	0.047	0.064	0.027
Speed of sound	c (m/s)	604.0	640.1	604.0
apeed or sound	c (fps)	1981.7	2100.0	1981.7
Mach number	M	1.0000	0.4005	1.0000
Constant	V (m/s)	604.0	256.4	604.0
Gas speed	V (fps)	1981.7	841.1	1981.7
Specific volume	m3/kg	1.32143	0.97117	2.28822
specific volume	cuft / lb	2.117E+01	1.556E+01	3.665E+01
Miscellaneous		choking conditions, flow sonic	non choking conditions, flow subsonic	choking conditions, flow sonic
Entropy variation			ween locations 2 & 3) fied	
Momentum for non choking flow	v at valve exit	momentum criterion f valve exit (between sati:		
Minimum atteignable back pressure in	P'b (Ps)	7.687E+04		
case of choking flow at valve exit	P'b (psi)	1.115E+01		
Additionnal criterion for choking f	low at valve exit	atteignable back pres	n based on minimum sure for choking flow fied, desired back	

MODU	Prediction of acoustic and aerodynamic performance of vent silencers for pressurized fluids
ITS	Scope of computation
	 sizing of vent silencers diffusers
	Applications
	 sizing of vent silencers diffusers in the context of engineering studies of pressurized fluid networks discharging to atmosphere
	Computation scheme (bloc diagram)
	 Not applicable
	Main/special features, main effects taken into account
	 design possible for superheated steam or saturated steam
	Main displayed results (tables):
	 pressure, temperature, density, sound speed, Mach number, gas speed at silencer outlet
	 silenced sound power level

(screenshot below: example)

MODULE 9

.

.

Prediction of sound decay in enclosed spaces

ITS Scope of computation

room acoustics design study

ITS Applications

consideration of the impact of reverberation on the acoustical quality of premises: protection of workers, protection of environment, energy sector, measurement rooms, building

notably:

- soundproofing industrial buildings
- large machine enclosures
- test benches
- ✓ premises dedicated to technical equipments
- \checkmark room intended to house activities such as catering, education, sports and recreation

ITS Computation scheme (bloc diagram)

ITS

Main/special features, main effects taken into account

- **design possible** with a rectangular shape or with different shapes
- scattering effects accounted for premises with a rectangular shape
- fitting accounted
- atmospheric absorption accounted

ITS Main displayed results (tables):

reverberation time per 1/1 octave frequency band

(screenshot below: for a rectangular room)

not considering atmospheric atte	nuation, not considering objects	31	63	125	250	500	1000	2000	4000	8000	500-2000
T60 (s) general model SAB		0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,80
T60 (s) general model EYR		0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,70
T60 (s) general model MIL		0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,60
T60 (s) general model CRE		0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,60
T60 (s) general model KUT	inhomogeneity accounted as differences between elementary surfaces	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,70
	inhomogeneity accounted as differences between partitions	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,70
	inhomogeneity accounted as differences between opposite partitions couples	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,70
T60 (s) general model FIT		0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,90
T60 (s) general model NEU		0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,70
T60 (s) general model ARA		0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,70
T60 (s) general model ISO (for stand	lard deviation between Tx,Ty,Tz,Td low)	1,09	1,09	1,09	1,09	0,77	0,76	0,75	0,72	0,62	0,80
	standard deviation between Tx, Ty, Tz, Td	34,3%	38,6%	62,0%	69,7%	68,9%	65,4%	61,5%	58,4%	57,3%	70,0%
T20 (s) general model ISO (for stand	Jard deviation between Tx,Ty,Tz,Td high)	1,09	1,09	1,09	1,09	1,29	1,07	0,89	0,74	0,60	1,10
T (s) model ISO (for selected evaluat	tion range)	1,09	1,09	1,09	1,09	2,82	2,28	1,81	1,44	1,14	2,30
T60 (s) general model NU		0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90
T (s) general model SAK for selected	d evaluation range	0,72	1,02	1,23	1,25	1,08	0,90	0,78	0,72	0,68	0,90
T60 (s) general model HOD											0,00

Report	Date	Page
PhR24-013	17-06-2024	42/45

the obtained results are comparable with standardized measurement NF EN ISO 3382-2 Acoustics -Measurement of room acoustics parameters- Part 2: reverberation time in ordinary rooms.

MODULE 9A

Prediction of sound spatial decay in open-plan offices

ITS Scope of computation

working places rooms acoustics design study

ITS Applications

.

evaluation of acoustical comfort of tertiary premises: protection of workers

ITS Computation scheme (bloc diagram)

ITS Main/special features, main effects taken into account

- room dimensions
- average height of screens & storage units
- ceiling absorption
- apparent furnishing absorption

ITS Main displayed results (tables):

- spatial decay rate of speech
- A-weighted sound pressure level of speech at a distance of 4 m
- spatial decay of speech (A-weighted sound pressure level of speech at a variable distance)

(screenshot below: example)

Some of the obtained results are comparable with standardized measurement NF EN ISO 3382-3 Acoustics - Measurement of room acoustics parameters- Part 3: Open plan offices.

NODULE 10 Prediction of prediction of the noise emissions from buildings and other constructions

ITS Scope of computation

buildings and other constructions (e.g. sound enclosures, gas turbine air inlet and outlet ducts) design study

ITS Applications

.

.

evaluation of noise impact for environment

ITS <u>Computation scheme (bloc diagram)</u>

ITS <u>Main/special features, main effects taken into account</u>

- building or other construction face dimensions and macro-directivity
- envelope sound reduction index
- (up to 5) openings sound reduction index, sound power level (self noise), directivity index
- (up to 2) external sources, sound power level, directivity index
- ground effect
- atmospheric sound attenuation

ITS Main displayed results (tables):

- total sound power level (per 1/1 octave frequency band and overall, A-weighted)
- sound pressure level at a specified location (per 1/1 octave frequency band and overall, A-weighted)
- noise map of partition (per 1/1 octave frequency band and overall, A-weighted)

(screenshot below: example for an industrial building wall with a length 40 m and a height 12.5 m)

Some of the obtained results are comparable with standardized calculations: cf. ISO 12354-4 Building acoustics - Estimation of acoustic performance of buildings from the performance of elements - Part 4: Transmission of indoor sound to the outside